This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356336 #10 Aug 04 2022 10:19:38 %S A356336 1,1,5,29,219,1949,20587,245237,3289577,48670973,788572541, %T A356336 13849348105,262283664739,5317530185889,114939490137235, %U A356336 2636612228192969,63955437488072593,1634890446576454297,43920715897460109205,1236660724225711901749,36412086992371220561771 %N A356336 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k) )^(1/(1-x)). %F A356336 a(0) = 1; a(n) = Sum_{k=1..n} A356297(k) * binomial(n-1,k-1) * a(n-k). %o A356336 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1/prod(k=1, N, (1-x^k)^(1/k)))^(1/(1-x)))) %o A356336 (PARI) a356297(n) = n!*sum(k=1, n, sigma(k, 0)/k); %o A356336 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356297(j)*binomial(i-1, j-1)*v[i-j+1])); v; %Y A356336 Cf. A000005, A028342, A356297, A356335, A356337. %K A356336 nonn %O A356336 0,3 %A A356336 _Seiichi Manyama_, Aug 04 2022