This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356337 #18 Feb 06 2023 13:25:41 %S A356337 1,1,8,63,644,7610,107994,1713726,30671024,603160344,12974475240, %T A356337 301879678320,7561610279112,202437968475288,5769455216675136, %U A356337 174234738889383480,5556311629901103360,186482786151757707840,6568881383985687359424,242221409390815100812224 %N A356337 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^k )^(1/(1-x)). %F A356337 a(0) = 1; a(n) = Sum_{k=1..n} A356298(k) * binomial(n-1,k-1) * a(n-k). %t A356337 With[{nn=20},CoefficientList[Series[Product[1/((1-x^k)^k)^(1/(1-x)),{k,nn}],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 06 2023 *) %o A356337 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1/prod(k=1, N, (1-x^k)^k))^(1/(1-x)))) %o A356337 (PARI) a356298(n) = n!*sum(k=1, n, sigma(k, 2)/k); %o A356337 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356298(j)*binomial(i-1, j-1)*v[i-j+1])); v; %Y A356337 Cf. A000219, A001157, A356298, A356335, A356336. %K A356337 nonn %O A356337 0,3 %A A356337 _Seiichi Manyama_, Aug 04 2022