cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356351 Partial sums of the ziggurat sequence A347186.

This page as a plain text file.
%I A356351 #39 Jul 16 2024 21:46:52
%S A356351 1,5,11,27,39,76,96,160,196,286,328,489,545,701,808,1064,1154,1488,
%T A356351 1598,2006,2208,2550,2706,3403,3610,4072,4384,5169,5409,6385,6657,
%U A356351 7681,8127,8883,9324,10910,11290,12220,12824,14560,15022,16863,17369,19175,20276,21608,22208,25129,25849,27669
%N A356351 Partial sums of the ziggurat sequence A347186.
%C A356351 a(n) is the volume (or the number of cubes) in a polycube whose base is the symmetric representation of A024916(n) which is formed with the first n 3D-Ziggurats described in A347186.
%C A356351 a(n) is also the total number of cubes in a three-dimensional spiral formed with the first n 3D-Ziggurats described in A347186 (see example). The base of the 3D-spiral is the spiral formed with the symmetric representation of sigma of the first n positive integers as shown in the example section of A239660.
%e A356351 For n = 16 the figure shows the top view of a three-dimensional spiral formed with the first 16 3D-Ziggurats described in A347186. There are four 3D-Ziggurats in every quadrant:
%e A356351 .
%e A356351                   _ _ _ _ _ _ _ _
%e A356351                  |_|_|_|_|_|_|_|_|_ _ _ _ _ _ _
%e A356351                  |_|             |_|_|_|_|_|_|_|
%e A356351                 _|_|                           |
%e A356351                |_|_|  _ _ _ _ _ _              |_ _
%e A356351             _ _|     |_|_|_|_|_|_|_ _ _ _ _        |_
%e A356351       _ _ _|_|      _|_|         |_|_|_|_|_|         |
%e A356351      |_|_|_|_|    _|_|_|                   |_ _      |_ _ _
%e A356351      |_|      _ _|_|      _ _ _ _          |_|_|         |_|
%e A356351      |_|     |_|_|_|    _|_|_|_|_|_ _ _      |_|_ _      |_|
%e A356351      |_|     |_|      _|_|_|     |_|_|_|         |_|     |_|
%e A356351      |_|     |_|     |_|_|_|           |_ _      |_|     |_|
%e A356351      |_|     |_|     |_|      _ _        |_|     |_|     |_|
%e A356351      |_|     |_|     |_|     |_|_|_      |_|     |_|     |_|
%e A356351     _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
%e A356351    |_|     |_|     |_|     |_|         |_|     |_|     |_|     |_|
%e A356351    |_|     |_|     |_|     |_|_ _     _|_|     |_|     |_|     |_|
%e A356351    |_|     |_|     |_|       |_|_|_ _|_|_|     |_|     |_|     |_|
%e A356351    |_|     |_|     |_|_          |_|_|_|    _ _|_|     |_|     |_|
%e A356351    |_|     |_|         |_                 _|_|_|_|     |_|     |_|
%e A356351    |_|     |_|_ _        |_ _ _ _        |_|_|    _ _ _|_|     |_|
%e A356351    |_|           |_      |_|_|_|_|_ _ _ _|_|    _|_|_|_|_|     |_|
%e A356351    |_|_ _ _        |_            |_|_|_|_|_|  _|_|_|_|    _ _ _|_|
%e A356351          |_|_ _      |                       |_|_|_|_|   |_|_|_|_|
%e A356351          |_|_|_|     |_ _ _ _ _ _            |_|_|_|    _|_|
%e A356351            |_|_|_    |_|_|_|_|_|_|_ _ _ _ _ _|_|      _|_|_|
%e A356351              |_|_|               |_|_|_|_|_|_|_|  _ _|_|_|
%e A356351                  |                               |_|_|_|
%e A356351                  |_ _ _ _ _ _ _ _                |_|
%e A356351                  |_|_|_|_|_|_|_|_|_ _ _ _ _ _ _ _|_|
%e A356351                                  |_|_|_|_|_|_|_|_|_|
%e A356351 .
%e A356351 The number of square cells in the top view of the n-th 3D-Ziggurat equals A000203(n).
%e A356351 The total number of square cells in the top view of the 3D-Spiral with the first n 3D-Ziggurats equals A024916(n).
%e A356351 In the above figure the total number of square cells equals A024916(16) = 220.
%e A356351 a(16) = 1064 is the total number of cubes in the 3D-Spiral with the first 16 3D-Ziggurats.
%Y A356351 Cf. A000203, A024916, A196020, A235791, A236104, A237270, A237591, A237593, A239660, A239931, A239932, A239933, A239934, A347186, A296508, A299778, A347186, A347263, A347367, A347529, A351819.
%K A356351 nonn
%O A356351 1,2
%A A356351 _Omar E. Pol_, Oct 15 2022