This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356351 #39 Jul 16 2024 21:46:52 %S A356351 1,5,11,27,39,76,96,160,196,286,328,489,545,701,808,1064,1154,1488, %T A356351 1598,2006,2208,2550,2706,3403,3610,4072,4384,5169,5409,6385,6657, %U A356351 7681,8127,8883,9324,10910,11290,12220,12824,14560,15022,16863,17369,19175,20276,21608,22208,25129,25849,27669 %N A356351 Partial sums of the ziggurat sequence A347186. %C A356351 a(n) is the volume (or the number of cubes) in a polycube whose base is the symmetric representation of A024916(n) which is formed with the first n 3D-Ziggurats described in A347186. %C A356351 a(n) is also the total number of cubes in a three-dimensional spiral formed with the first n 3D-Ziggurats described in A347186 (see example). The base of the 3D-spiral is the spiral formed with the symmetric representation of sigma of the first n positive integers as shown in the example section of A239660. %e A356351 For n = 16 the figure shows the top view of a three-dimensional spiral formed with the first 16 3D-Ziggurats described in A347186. There are four 3D-Ziggurats in every quadrant: %e A356351 . %e A356351 _ _ _ _ _ _ _ _ %e A356351 |_|_|_|_|_|_|_|_|_ _ _ _ _ _ _ %e A356351 |_| |_|_|_|_|_|_|_| %e A356351 _|_| | %e A356351 |_|_| _ _ _ _ _ _ |_ _ %e A356351 _ _| |_|_|_|_|_|_|_ _ _ _ _ |_ %e A356351 _ _ _|_| _|_| |_|_|_|_|_| | %e A356351 |_|_|_|_| _|_|_| |_ _ |_ _ _ %e A356351 |_| _ _|_| _ _ _ _ |_|_| |_| %e A356351 |_| |_|_|_| _|_|_|_|_|_ _ _ |_|_ _ |_| %e A356351 |_| |_| _|_|_| |_|_|_| |_| |_| %e A356351 |_| |_| |_|_|_| |_ _ |_| |_| %e A356351 |_| |_| |_| _ _ |_| |_| |_| %e A356351 |_| |_| |_| |_|_|_ |_| |_| |_| %e A356351 _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _ %e A356351 |_| |_| |_| |_| |_| |_| |_| |_| %e A356351 |_| |_| |_| |_|_ _ _|_| |_| |_| |_| %e A356351 |_| |_| |_| |_|_|_ _|_|_| |_| |_| |_| %e A356351 |_| |_| |_|_ |_|_|_| _ _|_| |_| |_| %e A356351 |_| |_| |_ _|_|_|_| |_| |_| %e A356351 |_| |_|_ _ |_ _ _ _ |_|_| _ _ _|_| |_| %e A356351 |_| |_ |_|_|_|_|_ _ _ _|_| _|_|_|_|_| |_| %e A356351 |_|_ _ _ |_ |_|_|_|_|_| _|_|_|_| _ _ _|_| %e A356351 |_|_ _ | |_|_|_|_| |_|_|_|_| %e A356351 |_|_|_| |_ _ _ _ _ _ |_|_|_| _|_| %e A356351 |_|_|_ |_|_|_|_|_|_|_ _ _ _ _ _|_| _|_|_| %e A356351 |_|_| |_|_|_|_|_|_|_| _ _|_|_| %e A356351 | |_|_|_| %e A356351 |_ _ _ _ _ _ _ _ |_| %e A356351 |_|_|_|_|_|_|_|_|_ _ _ _ _ _ _ _|_| %e A356351 |_|_|_|_|_|_|_|_|_| %e A356351 . %e A356351 The number of square cells in the top view of the n-th 3D-Ziggurat equals A000203(n). %e A356351 The total number of square cells in the top view of the 3D-Spiral with the first n 3D-Ziggurats equals A024916(n). %e A356351 In the above figure the total number of square cells equals A024916(16) = 220. %e A356351 a(16) = 1064 is the total number of cubes in the 3D-Spiral with the first 16 3D-Ziggurats. %Y A356351 Cf. A000203, A024916, A196020, A235791, A236104, A237270, A237591, A237593, A239660, A239931, A239932, A239933, A239934, A347186, A296508, A299778, A347186, A347263, A347367, A347529, A351819. %K A356351 nonn %O A356351 1,2 %A A356351 _Omar E. Pol_, Oct 15 2022