This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356353 #13 Oct 17 2022 07:07:43 %S A356353 0,3,7,12,15,31,48,51,56,60,63,127,192,195,204,207,240,243,252,255, %T A356353 448,455,504,511,768,771,780,783,816,819,828,831,960,963,972,975,992, %U A356353 1008,1011,1020,1023,2047,3072,3075,3084,3087,3120,3123,3132,3135,3264,3267 %N A356353 Numbers k such that A356352(k) <> 1. %C A356353 Also, numbers whose binary expansions are juxtapositions of constant blocks of size g > 1. %C A356353 A001196 and A097254 are subsequences. %C A356353 There are A178472(k) terms with binary length k. %H A356353 Rémy Sigrist, <a href="/A356353/a356353.gp.txt">PARI program</a> %H A356353 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A356353 The first terms, alongside their binary expansions and A356352(a(n)), are: %e A356353 n a(n) bin(a(n)) A356352(a(n)) %e A356353 -- ---- ---------- ------------- %e A356353 1 0 0 0 %e A356353 2 3 11 2 %e A356353 3 7 111 3 %e A356353 4 12 1100 2 %e A356353 5 15 1111 4 %e A356353 6 31 11111 5 %e A356353 7 48 110000 2 %e A356353 8 51 110011 2 %e A356353 9 56 111000 3 %e A356353 10 60 111100 2 %e A356353 11 63 111111 6 %e A356353 12 127 1111111 7 %e A356353 13 192 11000000 2 %e A356353 14 195 11000011 2 %e A356353 15 204 11001100 2 %e A356353 16 207 11001111 2 %o A356353 (PARI) is(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); gcd(r)!=1 } %o A356353 (PARI) See Links section. %o A356353 (Python) %o A356353 from math import gcd %o A356353 from itertools import groupby %o A356353 def ok(n): %o A356353 if n == 0: return True # by convention of A356352 %o A356353 return gcd(*(len(list(g)) for k, g in groupby(bin(n)[2:]))) != 1 %o A356353 print([k for k in range(3268) if ok(k)]) # _Michael S. Branicky_, Oct 15 2022 %Y A356353 Cf. A001196, A097254, A178472, A356352. %K A356353 nonn,base %O A356353 1,2 %A A356353 _Rémy Sigrist_, Oct 15 2022