This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356356 #51 Dec 25 2022 14:20:37 %S A356356 0,1,9,2,19,51,3,29,86,166,4,39,121,250,410,5,49,156,334,575,855,6,59, %T A356356 191,418,740,1141,1589,7,69,226,502,905,1427,2044,2716,8,79,261,586, %U A356356 1070,1713,2499,3396,4356,9,89,296,670,1235,1999,2954,4076,5325,6645 %N A356356 Triangle of number of rectangles in the interior of the rectangle with vertices (k,0), (0,k), (n,n+k) and (n+k,n), read by rows. %C A356356 The function of the triangle T(n,k), where n,k > 0, is equal to (n-k+1)*A330805(k-1) - (n-k)*T(k,k-1) + k*(n-k). This is equivalent to saying that this function is (n-k+1) Aztec diamonds (A330805(k-1)) minus the overlaps of those diamonds (two Aztec diamonds of size k-1 overlapped, hence f(k,k-1)) plus (n-k) copies of k extra rectangles. For this last part, the rectangles are of sizes 1 X (2k-1), 3 X (2k-3), 5 X (2k-5), ..., (2k-3) X 3, (2k-1) X 1 and there are (n-k) copies per overlap. %C A356356 T(n,n) = A330805(n-1). %C A356356 If n or k <= 0, T(n,k) = 0. %C A356356 T(n,k) = T(k,k) + (n-k)*A000447(k). That is, incrementing n for fixed k adds a fixed number of new rectangles, equal to A000447(k). %C A356356 This sequence was prompted by the codegolf.se question linked below, where the problem was to find T(n,k) plus the number of squares and rectangles in an n X k rectangular lattice with diagonals (lines y+a=+-x). %H A356356 Evan Robinson, <a href="/A356356/b356356.txt">First 100 rows, flattened</a> %H A356356 Code Golf Stack Exchange, <a href="https://codegolf.stackexchange.com/questions/87560/count-the-rectangles-in-a-diagonal-grid">Related problem of finding the number of squares on a diagonal grid</a> %F A356356 T(n,k) = (n-k+1)*A330805(k-1) - (n-k)*T(k,k-1) + k*(n-k). %F A356356 T(n,k) = (n-k+1)*(4*k^4-k^2-3*k)/6 - (n-k)*T(k,k-1) + k*(n-k). %F A356356 T(n,k) = 1/3*(n-k)*(4*k^3-k) + (4*k^4-k^2-3*k)/6. %F A356356 T(n,k) = (n-k)*A000447(k) + A330805(k-1). %F A356356 T(n,1) = n-1. %F A356356 T(n,n) = A330805(n-1). %F A356356 T(n,n-1) = (4*n^4-8*n^3-n^2+5*n)/6. %F A356356 T(n,k) = (n-1)*A000447(k) - T(k,k-1). %e A356356 Triangle T(n,k) begins: %e A356356 n\k 1 2 3 4 5 6 7 8 9 10 %e A356356 1 0 %e A356356 2 1 9 %e A356356 3 2 19 51 %e A356356 4 3 29 86 166 %e A356356 5 4 39 121 250 410 %e A356356 6 5 49 156 334 575 855 %e A356356 7 6 59 191 418 740 1141 1589 %e A356356 8 7 69 226 502 905 1427 2044 2716 %e A356356 9 8 79 261 586 1070 1713 2499 3396 4356 %e A356356 10 9 89 296 670 1235 1999 2954 4076 5325 6645 %e A356356 For n = 7, k = 3, T(n,k) = (7-3+1)*A330805(3-1) - (7-3)*f(3,2) + 3*(7-3) = 5*51 - 4*19 + 3*4 = 191. %o A356356 (Julia) %o A356356 function T(n, k) %o A356356 (2*(n-k)*(4*k^3-k)+(4*k^4-k^2-3*k))รท6 %o A356356 end %Y A356356 Cf. A330805, A000447. %K A356356 nonn,easy,tabl %O A356356 1,3 %A A356356 _Evan Robinson_, Oct 15 2022