This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356360 #31 Aug 06 2024 22:00:18 %S A356360 5,7,3,11,13,1,17,19,1,23,1,1,29,31,1,1,37,1,41,43,1,47,1,1,53,1,1,59, %T A356360 61,1,1,67,1,71,73,1,1,79,1,83,1,1,89,1,1,1,97,1,101,103,1,107,109,1, %U A356360 113,1,1,1,1,1,1,127,1,131,1,1,137,139,1,1,1,1,149,151,1,1,157,1,1,163,1,167 %N A356360 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))). %C A356360 Conjecture: The sequence contains only 1's and the primes. %C A356360 Similar continued fraction to A356247. %C A356360 Same as A128059(n), A145737(n-1) and A097302(n-2) for n > 5. %C A356360 a(n) = 1 positions appear to correspond to A104275(m), m > 2. Conjecture: all odd primes are seen in order after 11. - _Bill McEachen_, Aug 05 2024 %H A356360 Mohammed Bouras, <a href="https://doi.org/10.5281/zenodo.7212512">The Distribution Of Prime Numbers And The Continued Fractions</a>, (2022). %F A356360 For n >= 3, the formula of the continued fraction is as follows: %F A356360 (A051403(n-2) + A051403(n-3))/(2n - 1) = 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))). %F A356360 a(n) = (2n - 1)/gcd(2n - 1, A051403(n-2) + A051403(n-3)). %F A356360 From the conjecture: Except for n = 5, a(n)= 2n - 1 if 2n-1 is prime, 1 otherwise. %o A356360 (Python) %o A356360 from math import gcd, factorial %o A356360 def A356360(n): return (a:=(n<<1)-1)//gcd(a, a*sum(factorial(k) for k in range(n-2))+n*factorial(n-2)>>1) # _Chai Wah Wu_, Feb 26 2024 %Y A356360 Cf. A051403, A051417, A097302, A128059, A145737, A356247. %Y A356360 Cf. A104275. %K A356360 nonn %O A356360 3,1 %A A356360 _Mohammed Bouras_, Oct 15 2022