This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356362 #15 Feb 16 2025 08:34:03 %S A356362 1,0,0,3,-24,175,-1314,10339,-84448,696429,-5444700,32897601,53444304, %T A356362 -8071238721,235927045536,-5630771421765,126525509087232, %U A356362 -2799633511755963,62154971516786616,-1396560425289392007,31880150704745078400,-740188445913015688953 %N A356362 a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling1(n,3*k). %H A356362 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PochhammerSymbol.html">Pochhammer Symbol</a>. %F A356362 Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(n^(1/3) * log(1+x)). %F A356362 a(n) = (-1)^n * ( (-n^(1/3))_n + (-n^(1/3)*w)_n + (-n^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol. %o A356362 (PARI) a(n) = sum(k=0, n\3, n^k*stirling(n, 3*k, 1)); %o A356362 (PARI) a(n) = n!*polcoef(sum(k=0, n\3, n^k*log(1+x+x*O(x^n))^(3*k)/(3*k)!), n); %o A356362 (PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k); %o A356362 a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); (-1)^n*round(Pochhammer(-v, n)+Pochhammer(-v*w, n)+Pochhammer(-v*w^2, n))/3; %Y A356362 Cf. A356361, A356363. %Y A356362 Cf. A357834. %K A356362 sign %O A356362 0,4 %A A356362 _Seiichi Manyama_, Oct 16 2022