This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356374 #20 Aug 17 2022 23:07:57 %S A356374 131,41,11,178909,304290583,8345111009 %N A356374 a(n) is the first prime that starts a string of exactly n consecutive primes that are in A347702. %C A356374 a(n) is the first prime that starts a string of exactly n consecutive primes that are quasi-Niven numbers, i.e., have remainder 1 when divided by the sum of their digits. %C A356374 a(7) > 3*10^11, if it exists. - _Amiram Eldar_, Aug 04 2022 %e A356374 a(3) = 11 because [11, 13, 17] is the first string of exactly 3 consecutive primes that are quasi-Niven numbers: 11 mod (1+1) = 1, 13 mod (1+3) = 1 and 17 mod (1+7) = 1, while the preceding prime 7 and the next prime 23 are not quasi-Niven. %p A356374 filter:= proc(n) n mod convert(convert(n,base,10),`+`) = 1 end proc: %p A356374 V:= Vector(5): count:= 0: %p A356374 s:= 0: p:= 1: %p A356374 while count < 5 do %p A356374 p:= nextprime(p); %p A356374 if filter(p) then %p A356374 s:= s+1; %p A356374 if s = 1 then p0:= p fi %p A356374 elif s > 0 then %p A356374 if s <= 5 and V[s] = 0 then V[s]:= p0; count:= count+1 fi; %p A356374 s:= 0; %p A356374 fi %p A356374 od: %p A356374 convert(V,list); %t A356374 seq[len_, pmax_] := Module[{s = Table[0, {len}], v = {}, p = 2, c = 0, pfirst = 2, i}, While[c < len && p < pmax, If[Divisible[p - 1, Plus @@ IntegerDigits[p]], AppendTo[v, p]; If[pfirst == 0, pfirst = p], i = Length[v]; v = {}; If[0 < i <= len && s[[i]] == 0, s[[i]] = pfirst]; pfirst = 0]; p = NextPrime[p]]; s]; seq[4, 10^6] (* _Amiram Eldar_, Aug 04 2022 *) %Y A356374 Cf. A007605, A136251, A209871, A347702. %K A356374 nonn,base,more %O A356374 1,1 %A A356374 _J. M. Bergot_ and _Robert Israel_, Aug 04 2022 %E A356374 a(5)-a(6) from _Amiram Eldar_, Aug 04 2022