This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356376 #6 Nov 09 2022 19:16:18 %S A356376 1,3,5,6,4,11,12,9,13,15,23,7,27,16,24,25,34,36,19,14,50,41,10,40,60, %T A356376 32,43,35,26,20,38,63,79,81,57,44,74,80,65,72,107,28,53,93,76,66,114, %U A356376 56,129,55,119,47,103,125,85,39,45,141,106,77,98,137,109,33 %N A356376 Main diagonal of the LORO variant of the array A035486; this is one of eight such sequences discussed in A007063. %C A356376 Conjecture: every positive integer except 2 occurs exactly once. %t A356376 loro = Join[{{1}}, NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2], %t A356376 Range[Length[#], (Length[#] + 3)/2, -1]]]], %t A356376 Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, 200]]; %t A356376 s = Map[{#, Take[Flatten[Map[Take[#, {(Length[#] + 1)/2}] &, #]], 150] &[ %t A356376 ToExpression[#]]} &, {"loro"}]; u = Last[First[s]] %t A356376 (* _Peter J. C. Moses_, Jul 26 2022 *) %t A356376 (* The next program generates the LORO array. *) %t A356376 len = 8; loro = Join[{{1}}, NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2], %t A356376 Range[Length[#], (Length[#] + 3)/2, -1]]]], %t A356376 Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]]; %t A356376 Grid[Map[Flatten, Transpose[{#, Range[3 Range[Length[#]] - 1, %t A356376 4 (Length[#] - 2) - 1 + Range[Length[#]]]}]] &[loro]] %t A356376 (* _Peter J. C. Moses_, Aug 02 2022 *) %Y A356376 Cf. A007063, A035486. %K A356376 nonn %O A356376 1,2 %A A356376 _Clark Kimberling_, Oct 21 2022