cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356380 Main diagonal of the LIRO variant of the array A035486; this is one of eight such sequences discussed in A007063.

Original entry on oeis.org

1, 3, 5, 6, 4, 11, 13, 2, 7, 14, 24, 9, 10, 31, 35, 33, 27, 23, 38, 42, 46, 54, 37, 44, 52, 34, 17, 21, 26, 77, 79, 45, 28, 40, 12, 70, 36, 72, 69, 66, 90, 75, 47, 67, 95, 76, 126, 43, 108, 87, 74, 133, 88, 60, 116, 99, 102, 86, 151, 111, 156, 169, 173, 171
Offset: 1

Views

Author

Clark Kimberling, Oct 24 2022

Keywords

Comments

Conjecture: every positive integer occurs exactly once.

Crossrefs

Programs

  • Mathematica
    lori = Join[{{1}}, NestList[Join[#[[Riffle[Range[1, (Length[#] - 1)/2],
          Range[(Length[#] + 3)/2, Length[#]]]]],
          Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, 200]];
    s = Map[{#, Take[Flatten[Map[Take[#, {(Length[#] + 1)/2}] &, #]], 150] &[
          ToExpression[#]]} &, {"lori"}];
    Last[First[s]]   (* A356379 *)
    (* Peter J. C. Moses, Jul 26 2022 *)
    (* The next program generates the LIRO array. *)
    len = 8; liro = Join[{{1}}, NestList[Join[#[[Riffle[Range[(Length[#] - 1)/2, 1, -1],
         Range[Length[#], (Length[#] + 3)/2, -1]]]],
         Range[#, # + 2] &[(3 Length[#] + 1)/2]] &, {2, 3, 4}, len]];
    Grid[Map[Flatten, Transpose[{#, Range[3 Range[Length[#]] - 1,
           4 (Length[#] - 2) - 1 + Range[Length[#]]]}]] &[liro]]
    (* Peter J. C. Moses, Aug 02 2022 *)