This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356385 #53 Nov 07 2024 11:12:06 %S A356385 2,4,3,5,7,4,5,5,10,8,4,5,13,8,10,6,10,8,4,5,9,20,16,8,10,14,8,10,6, %T A356385 10,8,4,5,25,16,20,12,20,16,8,10,10,20,16,8,10,14,8,10,6,10,8,4,5,17, %U A356385 40,32,16,20,28,16,20,12,20,16,8,10,26,16,20,12,20,16 %N A356385 First differences of A353654 which is numbers with the same number of trailing 0 bits as other 0 bits. %F A356385 a(n) = A353654(n+1) - A353654(n) for n > 0. %F A356385 a(A000045(n)-1) = 5 for n > 4. %t A356385 Differences @ Join[{1}, Select[Range[2, 1000], IntegerExponent[#, 2] == Floor[Log2[# - 1]] - DigitCount[# - 1, 2, 1] &]] (* _Amiram Eldar_, Sep 21 2022 *) %o A356385 (PARI) isok(k) = if (k==1, 1, (logint(k-1, 2)-hammingweight(k-1) == valuation(k, 2))); \\ A353654 %o A356385 lista(nn) = my(v=select(isok, [1..nn])); vector(#v-1, k, v[k+1] - v[k]); \\ _Michel Marcus_, Sep 21 2022 %o A356385 (Python 3.10+) %o A356385 from itertools import pairwise, count, islice %o A356385 def A356385_gen(): # generator of terms %o A356385 return map(lambda x:x[1]-x[0],pairwise(filter(lambda n:(~n & n-1).bit_length()<<1 == n.bit_length()-n.bit_count(),count(1)))) %o A356385 A356385_list = list(islice(A356385_gen(),30)) # _Chai Wah Wu_, Oct 14 2022 %Y A356385 Cf. A000045, A353654. %K A356385 nonn,base %O A356385 1,1 %A A356385 _Mikhail Kurkov_, Aug 05 2022