This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356391 #24 Aug 18 2022 05:58:36 %S A356391 1,5,35,206,1654,13524,130668,1262064,15027696,178581600,2407111200, %T A356391 33276182400,514020643200,8130342124800,144621487584000, %U A356391 2537556118272000,49206063078144000,982811803276800000,20991083543732736000,454612169591580672000,10763306565511514112000 %N A356391 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) * d^2 ) /k. %H A356391 Seiichi Manyama, <a href="/A356391/b356391.txt">Table of n, a(n) for n = 1..448</a> %F A356391 a(n) = n! * Sum_{k=1..n} A078306(k)/k. %F A356391 E.g.f.: -(1/(1-x)) * Sum_{k>0} (-x)^k/(k * (1 - x^k)^2). %F A356391 E.g.f.: (1/(1-x)) * Sum_{k>0} k * log(1 + x^k). %F A356391 a(n) ~ n! * n^2 * 3 * zeta(3) / 8. - _Vaclav Kotesovec_, Aug 07 2022 %t A356391 Table[n! * Sum[Sum[(-1)^(k/d + 1)*d^2, {d, Divisors[k]}]/k, {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Aug 07 2022 *) %o A356391 (PARI) a(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^2)/k); %o A356391 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (-x)^k/(k*(1-x^k)^2))/(1-x))) %o A356391 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k*log(1+x^k))/(1-x))) %Y A356391 Cf. A356389, A356390. %Y A356391 Cf. A078306, A356298, A356394. %K A356391 nonn %O A356391 1,2 %A A356391 _Seiichi Manyama_, Aug 05 2022