cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356392 Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k) )^(1/(1-x)).

This page as a plain text file.
%I A356392 #13 Aug 16 2022 10:16:41
%S A356392 1,1,3,17,99,769,6877,70769,807321,10366037,145721531,2226927405,
%T A356392 36741898267,651709348653,12352436747141,249152882935829,
%U A356392 5320544034698353,120008265471779529,2850195632804141203,71058458112629765449,1855470903727083981651
%N A356392 Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k) )^(1/(1-x)).
%H A356392 Seiichi Manyama, <a href="/A356392/b356392.txt">Table of n, a(n) for n = 0..440</a>
%F A356392 a(0) = 1; a(n) = Sum_{k=1..n} A356389(k) * binomial(n-1,k-1) * a(n-k).
%o A356392 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^(1/k))^(1/(1-x))))
%o A356392 (PARI) a356389(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1))/k);
%o A356392 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356389(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356392 Cf. A356393, A356394.
%Y A356392 Cf. A168243, A356336, A356389.
%K A356392 nonn
%O A356392 0,3
%A A356392 _Seiichi Manyama_, Aug 05 2022