This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356395 #7 Aug 07 2022 07:52:33 %S A356395 0,1,3,6,8,11,14,21,24,35,40,50,55,58,66,82,90,108,118,126,144,147, %T A356395 176,189,205,234,247,273,286,296,325,338,364,377,380,401,443,464,511, %U A356395 527,548,590,611,658,684,705,752,762,783,825,846,893,919,940,987,990 %N A356395 Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic. %C A356395 See A094202 and A356396 for similar sequences. %H A356395 Wikipedia, <a href="https://en.wikipedia.org/wiki/NegaFibonacci_coding">NegaFibonacci coding</a> %H A356395 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %e A356395 The first terms are: %e A356395 n a(n) A215022(a(n)) %e A356395 -- ---- ------------- %e A356395 1 0 0 %e A356395 2 1 1 %e A356395 3 3 101 %e A356395 4 6 10001 %e A356395 5 8 10101 %e A356395 6 11 1001001 %e A356395 7 14 1000001 %e A356395 8 21 1010101 %e A356395 9 24 100101001 %e A356395 10 35 100000001 %o A356395 (PARI) is(n) = { my (v=0, neg=0, pos=0, f); for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) } %Y A356395 Cf. A094202, A215022, A356396. %K A356395 nonn,base %O A356395 1,3 %A A356395 _Rémy Sigrist_, Aug 05 2022