This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356396 #5 Aug 07 2022 07:52:37 %S A356396 0,2,7,20,26,44,54,73,112,143,159,196,212,264,290,350,376,426,492,518, %T A356396 568,675,756,798,905,986,1028,1125,1167,1280,1361,1403,1500,1542,1683, %U A356396 1751,1908,1976,2107,2290,2358,2515,2583,2714,2887,2955,3086,3275,3343 %N A356396 Nonnegative numbers k such that the negaFibonacci representation of -k (A215023(k)) is palindromic. %C A356396 See A094202 and A356395 for similar sequences. %H A356396 Wikipedia, <a href="https://en.wikipedia.org/wiki/NegaFibonacci_coding">NegaFibonacci coding</a> %H A356396 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %e A356396 The first terms are: %e A356396 n a(n) A215023(a(n)) %e A356396 -- ---- ------------- %e A356396 1 0 0 %e A356396 2 2 1001 %e A356396 3 7 100001 %e A356396 4 20 10000001 %e A356396 5 26 10100101 %e A356396 6 44 1001001001 %e A356396 7 54 1000000001 %e A356396 8 73 1010000101 %e A356396 9 112 100100001001 %e A356396 10 143 100000000001 %o A356396 (PARI) is(n) = { my (v=0, neg=0, pos=0, f); n=-n; for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) } %Y A356396 Cf. A094202, A215023, A356395. %K A356396 nonn,base %O A356396 1,2 %A A356396 _Rémy Sigrist_, Aug 05 2022