cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356410 Numbers k for which k^3 is divisible by sigma(k).

This page as a plain text file.
%I A356410 #26 Sep 04 2024 16:20:55
%S A356410 1,6,28,30,84,102,120,364,420,496,672,840,1080,1092,1320,1428,1488,
%T A356410 1782,2280,2716,2760,3276,3360,3444,3472,3480,3720,4452,5640,7080,
%U A356410 7392,7440,7560,8128,8148,8736,8910,9240,9480,10416,10920,11880,12400,15456,15960
%N A356410 Numbers k for which k^3 is divisible by sigma(k).
%H A356410 Amiram Eldar, <a href="/A356410/b356410.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..2000 from Robert Israel)
%e A356410 30 is a term, because 30^3 = 27000, sigma(30) = 72 and 27000 / 72 = 375.
%p A356410 select(t -> t^3 mod numtheory:-sigma(t) = 0, [$1..20000]); # _Robert Israel_, Sep 16 2022
%t A356410 Select[Range[16000], Divisible[#^3, DivisorSigma[1, #]] &]
%t A356410 Select[Range[16000],PowerMod[#,3,DivisorSigma[1,#]]==0&] (* _Harvey P. Dale_, Sep 04 2024 *)
%o A356410 (PARI) for(k=1,10^6,if(k^3%sigma(k)==0,print1(k,", "))) \\ _Alexandru Petrescu_, Sep 10 2022
%Y A356410 Cf. A000578, A000203, A090777.
%K A356410 nonn
%O A356410 1,2
%A A356410 _Zdenek Cervenka_, Aug 05 2022