This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356420 #17 Aug 13 2022 15:48:06 %S A356420 1,18,108,648,3888,11250,23328,139968,337500,501126,839808,5038848, %T A356420 8696754,10125000,30233088,51114852,57177414,181398528,303750000, %U A356420 573985764,1088391168,2401451388,5018345916,5213714904,6530347008,9112500000,23981814018,26622318750,37883060424 %N A356420 Integers k such that for some m >= 0, psi(k) = rad(k)^m, where psi(k) = A001615(k) and rad(k) = A007947(k). %C A356420 Inspired by A355045, which has an additional constraint. %C A356420 If k is a term then k*rad(k) is a term. Hence the sequence is infinite. For example, it contains 18*6^k for k >= 0. - _David A. Corneth_, Aug 07 2022 %t A356420 f[p_, e_] := (p + 1)*p^(e - 1); q[1] = True; q[n_] := IntegerQ @ Log[Times @@ (fct = FactorInteger[n])[[;; , 1]], Times @@ f @@@ fct]; Select[Range[10^6], q] (* _Amiram Eldar_, Aug 06 2022 *) %o A356420 (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947 %o A356420 Psi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615 %o A356420 isok(k) = if (k==1, return(1)); my(x); ispower(Psi(k),, &x) && (x == rad(k)); %Y A356420 Cf. A001615, A007947, A355045. %K A356420 nonn %O A356420 1,2 %A A356420 _Michel Marcus_, Aug 06 2022 %E A356420 More terms from _Jinyuan Wang_, Aug 06 2022