This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356471 #16 Sep 03 2022 08:07:03 %S A356471 19,41,47,53,157,199,491,557,563,571,647,1063,1091,1097,1109,1163, %T A356471 1171,1217,1259,1279,1361,1367,1487,1601,1621,1753,1901,1951,2053, %U A356471 2161,2383,2441,2549,2777,2851,2879,2887,2953,2957,3041,3061,3067,3163,3191,3491,3499,3719,3881,4003,4007,4013,4093 %N A356471 First of 5 consecutive primes p,q,r,s,t such that p*q+ q*r + r*s + s*t + t*p is prime. %H A356471 Robert Israel, <a href="/A356471/b356471.txt">Table of n, a(n) for n = 1..10000</a> %e A356471 a(3) = 47 is a term because 47, 53, 59, 61, 67 are 5 consecutive primes with 47*53 + 53*59 + 59*61 + 61*67 + 67*47 = 16453 prime. %p A356471 R:= NULL: count:= 0: %p A356471 P:= Vector(5,ithprime): %p A356471 while count < 100 do %p A356471 x:= P[1]*P[2]+P[2]*P[3]+P[3]*P[4]+P[4]*P[5]+P[5]*P[1]; %p A356471 if isprime(x) then R:= R, P[1]; count:= count+1 fi; %p A356471 P[1..4]:= P[2..5]; %p A356471 P[5]:= nextprime(P[5]); %p A356471 od: %p A356471 R; %t A356471 Select[Partition[Prime[Range[600]], 5, 1], PrimeQ[Total[# * RotateLeft[#]]] &][[;; , 1]] (* _Amiram Eldar_, Aug 08 2022 *) %o A356471 (Python) %o A356471 from itertools import islice %o A356471 from sympy import isprime, nextprime %o A356471 def agen(): %o A356471 p, q, r, s, t = 2, 3, 5, 7, 11 %o A356471 while True: %o A356471 if isprime(p*q + q*r + r*s + s*t + t*p): yield p %o A356471 p, q, r, s, t = q, r, s, t, nextprime(t) %o A356471 print(list(islice(agen(), 52))) # _Michael S. Branicky_, Aug 08 2022 %Y A356471 Cf. A356475, A356477. %K A356471 nonn %O A356471 1,1 %A A356471 _J. M. Bergot_ and _Robert Israel_, Aug 08 2022