A356477 a(n) is the start of the first sequence of 2*n+1 consecutive primes p_1, p_2, ..., p_(2*n+1) such that p_1*p_2 + p_2*p_3 + ... + p_(2*n)*p_(2*n+1) + p_(2*n+1)*p_1 is prime.
2, 19, 19, 2, 23, 2, 7, 7, 2, 5, 113, 5, 29, 13, 67, 53, 11, 11, 5, 23, 7, 43, 5, 2, 31, 73, 13, 3, 89, 5, 11, 3, 89, 31, 43, 2, 37, 2, 23, 7, 11, 19, 43, 23, 5, 2, 23, 3, 29, 5, 17, 3, 31, 29, 53, 29, 7, 13, 73, 3, 5, 43, 29, 17, 5, 37, 19, 11, 71, 7, 2, 43, 13, 19, 2, 59, 7, 29, 113, 13, 5, 11
Offset: 1
Keywords
Examples
a(2) = 19 because 19 is the start of the 2*2+1 = 5 consecutive primes 19, 23, 29, 31, 37 with 19*23 + 23*29 + 29*31 + 31*37 + 37*19 = 3853 prime, and no earlier 5-tuple of consecutive primes works.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(m) local P,x,i,n; n:= 2*m+1; P:= Vector(n,ithprime); do x:= add(P[i]*P[i+1],i=1..n-1)+P[n]*P[1]; if isprime(x) then return P[1] fi; P[1..n-1]:= P[2..n]; P[n]:= nextprime(P[n]); od end proc: map(f, [$1..100]);
-
Python
from sympy import isprime, nextprime, prime, primerange def a(n): p = list(primerange(1, prime(2*n+1)+1)) while True: if isprime(sum(p[i]*p[i+1] for i in range(len(p)-1))+p[-1]*p[0]): return p[0] p = p[1:] + [nextprime(p[-1])] print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Aug 08 2022