This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356478 #58 Sep 05 2022 09:10:42 %S A356478 2,4,11,15,21,35,42,111,81,117,126,60,291,147,225,417,210,330,357,555, %T A356478 561,375,315,477,735,552,420,975,630,585,816,840,930,1925,1302,1170, %U A356478 1140,2202,1215,1155,1911,1551,2031,1590,1365,2136,1425,2562,1740,1485,2331,2790,2160,2100,2640,2010,3681,2400,1785,2262,3252,2622,2940,1575,2310,2541,3987,2772 %N A356478 a(n) is the least k such that there are exactly n primes p <= k such that 2*k-p and p*(2*k-p)+2*k are also prime. %C A356478 a(n) is the least k such that A356864(k) = n. %H A356478 Robert Israel, <a href="/A356478/b356478.txt">Table of n, a(n) for n = 0..500</a> %e A356478 a(3) = 15 because there are exactly 3 primes p <= 15 with 30-p and p*(30-p)+30 prime, namely 7, 11 and 13, and no smaller number works. %p A356478 f:= proc(n) local p,q,t; %p A356478 p:= 1: t:= 0: %p A356478 do %p A356478 p:= nextprime(p); %p A356478 q:= n-p; %p A356478 if q <= p then return t fi; %p A356478 if isprime(q) and isprime(p*q+n) then t:= t+1 fi; %p A356478 od %p A356478 end proc: %p A356478 V:= Array(0..100): V[0]:= 2: count:= 1: %p A356478 for nn from 2 while count < 101 do %p A356478 v:= f(2*nn); %p A356478 if v > 100 then next fi; %p A356478 if V[v] = 0 then count:= count+1; V[v]:= nn; fi; %p A356478 od: %p A356478 convert(V,list); %Y A356478 Cf. A072511, A356864. %K A356478 nonn %O A356478 0,1 %A A356478 _J. M. Bergot_ and _Robert Israel_, Sep 01 2022