cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356486 a(n) = (n-1)! * Sum_{d|n} d^n / (d-1)!.

This page as a plain text file.
%I A356486 #17 Aug 30 2023 02:00:40
%S A356486 1,5,29,358,3149,98196,824263,73122736,784270089,158028202000,
%T A356486 285315299411,855386690484096,302875585593853,5876921233326141376,
%U A356486 111916280261483009775,73985874496557113890816,827240282809126652177,1625215094103508198780449024
%N A356486 a(n) = (n-1)! * Sum_{d|n} d^n / (d-1)!.
%F A356486 If p is prime, a(p) = p^p + (p-1)!.
%F A356486 E.g.f.: -Sum_{k>0} log(1 - (k * x)^k)/k!.
%t A356486 a[n_] := (n-1)! * DivisorSum[n, #^n / (#-1)! &]; Array[a, 18] (* _Amiram Eldar_, Aug 30 2023 *)
%o A356486 (PARI) a(n) = (n-1)!*sumdiv(n, d, d^n/(d-1)!);
%o A356486 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-(k*x)^k)/k!)))
%Y A356486 Cf. A087906, A354890, A356487.
%K A356486 nonn
%O A356486 1,2
%A A356486 _Seiichi Manyama_, Aug 09 2022