cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356487 Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k!).

This page as a plain text file.
%I A356487 #12 Aug 09 2022 11:20:01
%S A356487 1,1,6,45,580,7105,170076,2654575,116426528,2386183761,209503380160,
%T A356487 3455683548691,969334978024920,15164681616944353,6510178188269825720,
%U A356487 223847763757748796975,81261936394687862700256,1581790511799886415713825
%N A356487 Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k!).
%F A356487 a(0) = 1; a(n) = Sum_{k=1..n} A356486(k) * binomial(n-1,k-1) * a(n-k).
%o A356487 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k!))))
%o A356487 (PARI) a356486(n) = (n-1)!*sumdiv(n, d, d^n/(d-1)!);
%o A356487 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356486(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356487 Cf. A023882, A209902, A356486.
%K A356487 nonn
%O A356487 0,3
%A A356487 _Seiichi Manyama_, Aug 09 2022