This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356490 #25 Jan 31 2023 05:35:07 %S A356490 1,2,-5,12,-19,-22,1143,-4284,14265,-46726,-84405,1306096,32312445, %T A356490 522174906,4105967871,5135940112,-642055973735,-2832632334858, %U A356490 14310549077571,380891148658140,4888186898996125,-49513565563840210,383405170118692791,-2517836083641473036,-3043377347606882055 %N A356490 a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n). %C A356490 Conjecture: abs(a(n)) is prime only for n = 1, 2, and 4. %H A356490 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3736861/determinant-of-a-toeplitz-matrix">Determinant of a Toeplitz matrix</a> %H A356490 Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %F A356490 A350955(n) <= a(n) <= A350956(n). %e A356490 For n = 1 the matrix M(1) is %e A356490 2 %e A356490 with determinant a(1) = 2. %e A356490 For n = 2 the matrix M(2) is %e A356490 2, 3 %e A356490 3, 2 %e A356490 with determinant a(2) = -5. %e A356490 For n = 3 the matrix M(3) is %e A356490 2, 3, 5 %e A356490 3, 2, 3 %e A356490 5, 3, 2 %e A356490 with determinant a(3) = 12. %p A356490 A356490 := proc(n) %p A356490 local T,c ; %p A356490 if n =0 then %p A356490 return 1 ; %p A356490 end if; %p A356490 T := LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c),c=1..n)],n,symmetric) ; %p A356490 LinearAlgebra[Determinant](T) ; %p A356490 end proc: %p A356490 seq(A356490(n),n=0..15) ; # _R. J. Mathar_, Jan 31 2023 %t A356490 k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Det[M[n]]; Join[{1},Table[a[n],{n,24}]] %o A356490 (PARI) a(n) = matdet(apply(prime, matrix(n,n,i,j,abs(i-j)+1))); \\ _Michel Marcus_, Aug 12 2022 %o A356490 (Python) %o A356490 from sympy import Matrix, prime %o A356490 def A356490(n): return Matrix(n,n,[prime(abs(i-j)+1) for i in range(n) for j in range(n)]).det() # _Chai Wah Wu_, Aug 12 2022 %Y A356490 Cf. A005843 (trace of M(n)), A309131 (k-superdiagonal sum of M(n)), A356483 (hafnian of M(2*n)), A356491 (permanent of M(n)). %Y A356490 Cf. A350955, A350956. %K A356490 sign %O A356490 0,2 %A A356490 _Stefano Spezia_, Aug 09 2022