A356510 Primes p such that 2*p^2 - 7, 2*p^2 - 1, and 2*p^2 + 3 are prime.
43, 127, 197, 3613, 3767, 4957, 28687, 29723, 40193, 46817, 66403, 78737, 89137, 93253, 104243, 105337, 105673, 110543, 114113, 123397, 127247, 145963, 148303, 168713, 173293, 190387, 201893, 207367, 213613, 241597, 256117, 261323, 268253, 278543, 283807, 333227, 339373, 340913, 356173, 359143
Offset: 1
Keywords
Examples
a(3) = 197 is a term because 197, 2*197^2 - 7 = 77611, 2*197^2 - 1 = 77617, and 2*197^2 + 3 = 77621 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= p -> isprime(p) and isprime(2*p^2+3) and isprime(2*p^2-1) and isprime(2*p^2-7): select(filter, [seq(i,i=3..1000000,2)]);
-
Mathematica
Select[Prime[Range[30000]], AllTrue[2*#^2 + {-7, -1, 3}, PrimeQ] &] (* Amiram Eldar, Aug 09 2022 *)
-
Python
from sympy import isprime def ok(n): return isprime(n) and all(isprime(2*n*n-i) for i in [7, 1, -3]) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 09 2022
Comments