This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356511 #30 Jan 09 2025 13:04:15 %S A356511 1,2,3,4,5,9,19,45,107,275,778,2581,10170,45237,222859,1191214, %T A356511 6887258,42894933,287397837 %N A356511 Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 operation at most n times in duodecimal (base 12). %H A356511 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200. %H A356511 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy. %H A356511 J. Conrad, <a href="https://raw.githubusercontent.com/cxr00/cxr/master/tests/base64/choix_de_bruxelles.py">Python program</a>. %e A356511 For n=4, the a(4) = 5 numbers obtained are (in base 12): 1, 2, 4, 8, 14. %e A356511 For n=5, they expand to a(5) = 9 numbers (in base 12): 1, 2, 4, 8, 12, 14, 18, 24, 28. %o A356511 (Python) # See Conrad link. %o A356511 (Python) %o A356511 from itertools import islice %o A356511 from sympy.ntheory import digits %o A356511 def fd12(d): return sum(12**i*di for i, di in enumerate(d[::-1])) %o A356511 def cdb2(n): %o A356511 d, out = digits(n, 12)[1:], {n} %o A356511 for l in range(1, len(d)+1): %o A356511 for i in range(len(d)+1-l): %o A356511 if d[i] == 0: continue %o A356511 t = fd12(d[i:i+l]) %o A356511 out.add(fd12(d[:i] + digits(2*t, 12)[1:] + d[i+l:])) %o A356511 if t&1 == 0: %o A356511 out.add(fd12(d[:i] + digits(t//2, 12)[1:] + d[i+l:])) %o A356511 return out %o A356511 def agen(): %o A356511 reach, expand = {1}, [1] %o A356511 while True: %o A356511 yield len(reach) %o A356511 newreach = {r for q in expand for r in cdb2(q) if r not in reach} %o A356511 reach |= newreach %o A356511 expand = list(newreach) %o A356511 print(list(islice(agen(), 14))) # _Michael S. Branicky_, Aug 17 2022 %Y A356511 Cf. A323289 (decimal). %K A356511 nonn,more,base %O A356511 0,2 %A A356511 _J. Conrad_, Aug 09 2022 %E A356511 a(16)-a(18) from _Michael S. Branicky_, Aug 17 2022