cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356517 Square array A(n, k), n >= 2, k >= 0, read by antidiagonals upwards; A(n, k) is the least integer with sum of digits k in base n.

This page as a plain text file.
%I A356517 #17 Jan 05 2024 12:29:30
%S A356517 0,0,1,0,1,3,0,1,2,7,0,1,2,5,15,0,1,2,3,8,31,0,1,2,3,7,17,63,0,1,2,3,
%T A356517 4,11,26,127,0,1,2,3,4,9,15,53,255,0,1,2,3,4,5,14,31,80,511,0,1,2,3,4,
%U A356517 5,11,19,47,161,1023,0,1,2,3,4,5,6,17,24,63,242,2047
%N A356517 Square array A(n, k), n >= 2, k >= 0, read by antidiagonals upwards; A(n, k) is the least integer with sum of digits k in base n.
%C A356517 The expansion of A(n, k) in base n is:
%C A356517        q  n-1  ...  n-1
%C A356517           <- p times ->
%C A356517 where q = k mod (n-1) and p = floor(k / (n-1)).
%H A356517 Andrew Howroyd, <a href="/A356517/b356517.txt">Table of n, a(n) for n = 2..1276</a> (first 50 antidiagonals)
%F A356517 A(2, k) = 2^k - 1.
%F A356517 A(3, k) = A062318(k+1).
%F A356517 A(4, k) = A180516(k+1).
%F A356517 A(5, k) = A181287(k+1).
%F A356517 A(6, k) = A181288(k+1).
%F A356517 A(7, k) = A181303(k+1).
%F A356517 A(8, k) = A165804(k+1).
%F A356517 A(9, k) = A140576(k+1).
%F A356517 A(10, k) = A051885(k).
%F A356517 A(n, 0) = 0.
%F A356517 A(n, 1) = 1.
%F A356517 A(n, k) = k iff k < n.
%F A356517 A(n, n) = 2*n - 1.
%F A356517 A(n, n+1) = 3*n - 1 for any n > 2.
%e A356517 Array A(n, k) begins:
%e A356517   n\k|  0  1  2  3   4   5   6    7    8    9    10    11    12
%e A356517   ---+---------------------------------------------------------
%e A356517     2|  0  1  3  7  15  31  63  127  255  511  1023  2047  4095
%e A356517     3|  0  1  2  5   8  17  26   53   80  161   242   485   728
%e A356517     4|  0  1  2  3   7  11  15   31   47   63   127   191   255
%e A356517     5|  0  1  2  3   4   9  14   19   24   49    74    99   124
%e A356517     6|  0  1  2  3   4   5  11   17   23   29    35    71   107
%e A356517     7|  0  1  2  3   4   5   6   13   20   27    34    41    48
%e A356517     8|  0  1  2  3   4   5   6    7   15   23    31    39    47
%e A356517     9|  0  1  2  3   4   5   6    7    8   17    26    35    44
%e A356517    10|  0  1  2  3   4   5   6    7    8    9    19    29    39
%e A356517 Array A(n, k) begins (with values given in base n):
%e A356517   n\k|  0  1   2    3     4      5       6        7         8          9
%e A356517   ---+------------------------------------------------------------------
%e A356517     2|  0  1  11  111  1111  11111  111111  1111111  11111111  111111111
%e A356517     3|  0  1   2   12    22    122     222     1222      2222      12222
%e A356517     4|  0  1   2    3    13     23      33      133       233        333
%e A356517     5|  0  1   2    3     4     14      24       34        44        144
%e A356517     6|  0  1   2    3     4      5      15       25        35         45
%e A356517     7|  0  1   2    3     4      5       6       16        26         36
%e A356517     8|  0  1   2    3     4      5       6        7        17         27
%e A356517     9|  0  1   2    3     4      5       6        7         8         18
%e A356517    10|  0  1   2    3     4      5       6        7         8          9
%o A356517 (PARI) A(n,k) = { (1+k%(n-1))*n^(k\(n-1))-1 }
%o A356517 (Python) def A(n,k): return (1+(k % (n-1)))*n**(k//(n-1))-1
%Y A356517 Cf. A000225, A051885, A062318, A140576, A165804, A180516, A181287, A181288, A181303, A138530, A240236.
%K A356517 nonn,tabl,base
%O A356517 2,6
%A A356517 _Rémy Sigrist_, Aug 10 2022