cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356524 Expansion of e.g.f. Product_{k>0} 1/(1 - k * x^k)^(1/k!).

This page as a plain text file.
%I A356524 #13 Aug 10 2022 22:34:34
%S A356524 1,1,4,15,100,565,5946,46039,605256,6646329,103614490,1320840631,
%T A356524 27185208876,401901829069,9042437722878,168984439301175,
%U A356524 4257225193170256,85582303577644465,2593970612953642386,57441717948059605927,1862688382990615542900
%N A356524 Expansion of e.g.f. Product_{k>0} 1/(1 - k * x^k)^(1/k!).
%F A356524 a(0) = 1; a(n) = Sum_{k=1..n} A354849(k) * binomial(n-1,k-1) * a(n-k).
%o A356524 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k*x^k)^(1/k!))))
%o A356524 (PARI) a354849(n) = (n-1)!*sumdiv(n, d, d^(n/d)/(d-1)!);
%o A356524 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354849(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356524 Cf. A006906, A209902, A294462, A354849, A356487.
%K A356524 nonn
%O A356524 0,3
%A A356524 _Seiichi Manyama_, Aug 10 2022