cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356529 a(n) = (n-1)! * Sum_{d|n} d^(n-d+1).

This page as a plain text file.
%I A356529 #14 Aug 10 2022 22:34:39
%S A356529 1,3,8,78,144,14400,5760,5851440,88583040,5859786240,43545600,
%T A356529 24077414592000,6706022400,35948640894566400,4395744249613516800,
%U A356529 263312496059348736000,376610217984000,5901087844517892009984000,128047474114560000
%N A356529 a(n) = (n-1)! * Sum_{d|n} d^(n-d+1).
%F A356529 a(n) = (n-1)! * A342675(n).
%F A356529 If p is prime, a(p) = (1+p) * (p-1)!.
%F A356529 E.g.f.: -Sum_{k>0} log(1 - (k * x)^k)/k^k.
%t A356529 a[n_] := (n - 1)! * DivisorSum[n, #^(n - # + 1) &]; Array[a, 20] (* _Amiram Eldar_, Aug 10 2022 *)
%o A356529 (PARI) a(n) = (n-1)!*sumdiv(n, d, d^(n-d+1));
%o A356529 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-(k*x)^k)/k^k)))
%Y A356529 Cf. A342675, A356486, A356530.
%K A356529 nonn
%O A356529 1,2
%A A356529 _Seiichi Manyama_, Aug 10 2022