cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356541 a(n) = Sum_{d|n} d * (d!)^(n/d-1).

This page as a plain text file.
%I A356541 #13 Aug 30 2023 02:00:36
%S A356541 1,3,4,9,6,33,8,121,118,643,12,7349,14,35423,75904,378129,18,6400179,
%T A356541 20,46256149,177951190,439086871,24,21025820825,1036800026,
%U A356541 80951278619,1185142088476,2117428953117,30,153033887545887,32,859169550303265,17526860326038562
%N A356541 a(n) = Sum_{d|n} d * (d!)^(n/d-1).
%F A356541 G.f.: Sum_{k>=1} k * x^k/(1 - k! * x^k).
%F A356541 If p is prime, a(p) = 1 + p.
%t A356541 a[n_] := DivisorSum[n, # * (#)!^(n/# - 1) &]; Array[a, 33] (* _Amiram Eldar_, Aug 30 2023 *)
%o A356541 (PARI) a(n) = sumdiv(n, d, d*d!^(n/d-1));
%o A356541 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-k!*x^k)))
%Y A356541 Cf. A356542, A356543.
%K A356541 nonn
%O A356541 1,2
%A A356541 _Seiichi Manyama_, Aug 11 2022