cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356544 Number of strict closure operators on a set of n elements such that all pairs of nonempty disjoint closed sets can be separated by clopen sets.

This page as a plain text file.
%I A356544 #51 Jun 13 2024 11:36:43
%S A356544 0,1,4,35,857,84230,70711467
%N A356544 Number of strict closure operators on a set of n elements such that all pairs of nonempty disjoint closed sets can be separated by clopen sets.
%C A356544 A closure operator is strict if the empty set is closed.
%C A356544 Two nonempty disjoint subsets A and B of X are separated by a set H if A is a subset of H and B is a subset of X\H.
%C A356544 Also the number of S_4 (Kakutani separation property) convexities on a set of n elements in the sense of Chepoi.
%D A356544 G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212.
%H A356544 Victor Chepoi, <a href="https://www.researchgate.net/publication/2407147_Separation_Of_Two_Convex_Sets_In_Convexity_Structures">Separation of Two Convex Sets in Convexity Structures</a>
%H A356544 Wikipedia, <a href="https://en.wikipedia.org/wiki/Closure_operator">Closure operator</a>
%e A356544 The a(3) = 35 set-systems of closed sets:
%e A356544 {{}, {1, 2, 3}}
%e A356544 {{}, {1}, {1, 2, 3}}
%e A356544 {{}, {2}, {1, 2, 3}}
%e A356544 {{}, {3}, {1, 2, 3}}
%e A356544 {{}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {1}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {3}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {3}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {3}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {1}, {3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {1, 2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {3}, {1, 2}, {1, 2, 3}}
%e A356544 {{}, {2}, {3}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
%e A356544 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
%t A356544 SeparatedPairQ[A_][B_] := AnyTrue[A, And @@ MapThread[SubsetQ, {#, B}] &];
%t A356544 Table[Length[With[{X = Range[n]},
%t A356544 Select[Cases[Subsets@Subsets@X, {{}, ___, X}],
%t A356544    F |-> SubsetQ[F, Intersection @@@ Subsets[F, {2}]]
%t A356544 && AllTrue[Select[Subsets[Drop[F, 1], {2}], Apply[DisjointQ]], SeparatedPairQ[Select[{#, Complement[X, #]} & /@ F, MemberQ[F, #[[2]]] &]]]]]], {n, 0, 4}]
%Y A356544 Cf. A334255, A358144, A358152.
%K A356544 nonn,hard,more
%O A356544 0,3
%A A356544 _Tian Vlasic_, Aug 11 2022
%E A356544 a(5)-a(6) from _Christian Sievers_, Jun 13 2024