This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356546 #24 Feb 15 2023 04:41:01 %S A356546 1,2,2,6,12,6,20,60,60,20,70,280,420,280,70,252,1260,2520,2520,1260, %T A356546 252,924,5544,13860,18480,13860,5544,924,3432,24024,72072,120120, %U A356546 120120,72072,24024,3432,12870,102960,360360,720720,900900,720720,360360,102960,12870 %N A356546 Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!). %C A356546 The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506. %F A356546 Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2). %F A356546 G.f.: 1/sqrt(1 - 4*x*(y + 1)). - _Vladimir Kruchinin_, Feb 15 2023 %e A356546 Triangle T(n, k) begins: %e A356546 [0] 1; %e A356546 [1] 2, 2; %e A356546 [2] 6, 12, 6; %e A356546 [3] 20, 60, 60, 20; %e A356546 [4] 70, 280, 420, 280, 70; %e A356546 [5] 252, 1260, 2520, 2520, 1260, 252; %e A356546 [6] 924, 5544, 13860, 18480, 13860, 5544, 924; %e A356546 [7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432; %e A356546 [8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870; %p A356546 A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!): %p A356546 for n from 0 to 8 do seq(A356546(n, k), k=0..n) od; %t A356546 T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* _Michael Somos_, Aug 18 2022 *) %o A356546 (SageMath) %o A356546 def A356546(n, k): %o A356546 return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k)) %o A356546 for n in range(9): print([A356546(n, k) for k in range(n+1)]) %o A356546 (PARI) {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* _Michael Somos_, Aug 18 2022 */ %Y A356546 cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial). %Y A356546 Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms). %K A356546 sign,tabl %O A356546 0,2 %A A356546 _Peter Luschny_, Aug 12 2022