A356553 For any n > 0, let b > 1 be the least base where the sum of digits of n divides n; a(n) is the sum of digits of n in base b.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 5, 2, 1, 2, 1, 2, 1, 1, 3, 2, 5, 2, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 2, 1, 5, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 1, 2, 3, 1, 5, 2, 1, 2, 3, 10, 1, 2, 1, 2, 5, 4, 7, 6, 1, 2, 3, 2, 1, 3, 5, 2, 3
Offset: 1
Examples
For n = 14: - we have: b sum of digits divides 14? -- ------------- ----------- 2 3 no 3 4 no 4 5 no 5 6 no 6 4 no 7 2 yes - so a(14) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A356552.
Programs
-
Mathematica
a[n_] := Module[{b = 2}, While[!Divisible[n, (s = Plus @@ IntegerDigits[n, b])], b++]; s]; Array[a, 100] (* Amiram Eldar, Sep 19 2022 *)
-
PARI
a(n) = { for (b=2, oo, my (s=sumdigits(n, b)); if (n % s==0, return (s))) }
-
Python
from sympy.ntheory import digits def a(n): b = 2 while n != 0 and n%sum(digits(n, b)[1:]): b += 1 return sum(digits(n, b)[1:]) print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Aug 12 2022
Comments