This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356555 #10 Aug 15 2022 05:22:59 %S A356555 2,2,3,3,4,2,3,4,5,5,6,2,3,4,5,6,7,7,8,2,3,4,5,7,8,9,3,4,7,9,10,2,3,5, %T A356555 6,9,10,11,11,12,2,3,4,5,6,7,9,10,11,12,13,13,14,7,8,13,14,15,3,5,6,7, %U A356555 11,13,15,16,2,3,4,5,7,8,9,13,15,16,17,17,18 %N A356555 Irregular triangle T(n, k), n > 0, k = 1..A080221(n) read by rows; the n-th row contains, in ascending order, the bases b from 2..n+1 where the sum of digits of n divides n. %C A356555 A080221 provides row lengths (note that for n > 0, we consider the base n+1 but not the base 1, unlike A080221 that considers the base 1 but not the base n+1, however this does not matter as the sums of digits of n in base 1 and base n+1 are the same). %F A356555 T(n, 1) = A356552(n). %F A356555 T(n, A080221(n)-1) = n for n > 1. %F A356555 T(n, A080221(n)) = n+1. %e A356555 Triangle T(n, k) begins: %e A356555 n n-th row %e A356555 -- -------- %e A356555 1 [2] %e A356555 2 [2, 3] %e A356555 3 [3, 4] %e A356555 4 [2, 3, 4, 5] %e A356555 5 [5, 6] %e A356555 6 [2, 3, 4, 5, 6, 7] %e A356555 7 [7, 8] %e A356555 8 [2, 3, 4, 5, 7, 8, 9] %e A356555 9 [3, 4, 7, 9, 10] %e A356555 10 [2, 3, 5, 6, 9, 10, 11] %e A356555 11 [11, 12] %e A356555 12 [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13] %e A356555 13 [13, 14] %e A356555 14 [7, 8, 13, 14, 15] %e A356555 15 [3, 5, 6, 7, 11, 13, 15, 16] %e A356555 16 [2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17] %e A356555 17 [17, 18] %o A356555 (PARI) row(n) = select(b -> n % sumdigits(n,b)==0, [2..n+1]) %o A356555 (Python) %o A356555 from sympy.ntheory import digits %o A356555 def row(n): return [b for b in range(2, n+2) if n%sum(digits(n, b)[1:])==0] %o A356555 print([an for n in range(1, 18) for an in row(n)]) # _Michael S. Branicky_, Aug 12 2022 %Y A356555 Cf. A080221, A356552. %K A356555 nonn,base,tabf %O A356555 1,1 %A A356555 _Rémy Sigrist_, Aug 12 2022