cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356560 Expansion of e.g.f. Product_{k>0} 1/(1 - k^2 * x^k)^(1/k^2).

This page as a plain text file.
%I A356560 #13 Aug 12 2022 09:21:18
%S A356560 1,1,4,18,156,1020,16560,143640,2898000,43016400,926856000,
%T A356560 13749674400,524416939200,8626888670400,284030505158400,
%U A356560 7950850859952000,284397434953632000,6752059834744224000,357295791069689472000,9098085523917918528000
%N A356560 Expansion of e.g.f. Product_{k>0} 1/(1 - k^2 * x^k)^(1/k^2).
%F A356560 a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A308688(k) * a(n-k)/(n-k)!.
%o A356560 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k^2*x^k)^(1/k^2))))
%o A356560 (PARI) a308688(n) = sumdiv(n, d, d^(2*n/d-1));
%o A356560 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a308688(j)*v[i-j+1]/(i-j)!)); v;
%Y A356560 Cf. A294462, A294469, A356530, A356561.
%Y A356560 Cf. A077335, A308688.
%K A356560 nonn
%O A356560 0,3
%A A356560 _Seiichi Manyama_, Aug 12 2022