cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356561 Expansion of e.g.f. Product_{k>0} 1/(1 - k^3 * x^k)^(1/k^3).

This page as a plain text file.
%I A356561 #10 Aug 12 2022 09:21:13
%S A356561 1,1,4,18,204,1260,37440,299880,11002320,204860880,6618628800,
%T A356561 92924647200,8181137764800,124123075876800,7211104918617600,
%U A356561 288085376346768000,14964000305173920000,340302035937191328000,42619767305209750656000
%N A356561 Expansion of e.g.f. Product_{k>0} 1/(1 - k^3 * x^k)^(1/k^3).
%F A356561 a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A308689(k) * a(n-k)/(n-k)!.
%o A356561 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k^3*x^k)^(1/k^3))))
%o A356561 (PARI) a308689(n) = sumdiv(n, d, d^(3*n/d-2));
%o A356561 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a308689(j)*v[i-j+1]/(i-j)!)); v;
%Y A356561 Cf. A294462, A294469, A356530, A356560.
%Y A356561 Cf. A265837, A308689.
%K A356561 nonn
%O A356561 0,3
%A A356561 _Seiichi Manyama_, Aug 12 2022