cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356565 Expansion of e.g.f. ( Product_{k>0} (1+x^k) )^x.

This page as a plain text file.
%I A356565 #15 Aug 17 2022 02:35:14
%S A356565 1,0,2,3,44,90,2034,9240,168944,951048,24042600,185387400,4411634952,
%T A356565 44020650960,1166597641104,14101322278680,399099955203840,
%U A356565 5522583764698560,169123038510919104,2779010889700890240,87888034148774728320,1637061268780618450560
%N A356565 Expansion of e.g.f. ( Product_{k>0} (1+x^k) )^x.
%F A356565 a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k! * A000593(k-1)/(k-1) * binomial(n-1,k-1) * a(n-k).
%t A356565 nmax = 20; CoefficientList[Series[Product[(1 + x^k)^x, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Aug 17 2022 *)
%o A356565 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+x^k)^x))
%o A356565 (PARI) a000593(n) = sumdiv(n, d, (-1)^(n/d+1)*d);
%o A356565 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*a000593(j-1)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356565 Cf. A356564, A356566.
%Y A356565 Cf. A000593, A007113, A356393.
%K A356565 nonn
%O A356565 0,3
%A A356565 _Seiichi Manyama_, Aug 12 2022