cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356574 a(n) = Sum_{d|n} tau(d^4), where tau(n) = number of divisors of n, cf. A000005.

This page as a plain text file.
%I A356574 #63 Dec 15 2022 09:59:49
%S A356574 1,6,6,15,6,36,6,28,15,36,6,90,6,36,36,45,6,90,6,90,36,36,6,168,15,36,
%T A356574 28,90,6,216,6,66,36,36,36,225,6,36,36,168,6,216,6,90,90,36,6,270,15,
%U A356574 90,36,90,6,168,36,168,36,36,6,540,6,36,90,91,36,216,6,90,36,216,6,420,6,36,90,90
%N A356574 a(n) = Sum_{d|n} tau(d^4), where tau(n) = number of divisors of n, cf. A000005.
%H A356574 Seiichi Manyama, <a href="/A356574/b356574.txt">Table of n, a(n) for n = 1..10000</a>
%F A356574 a(n) = Sum_{d|n} tau(n * d^2) = Sum_{d|n} tau(n^2).
%F A356574 a(n) = tau(n) * tau(n^2).
%F A356574 G.f.: Sum_{k>=1} tau(k^4) * x^k/(1 - x^k).
%F A356574 Multiplicative with a(p^e) = 2*e^2 + 3*e + 1. - _Amiram Eldar_, Dec 14 2022
%t A356574 Array[DivisorSum[#, DivisorSigma[0, #^4] &] &, 120] (* _Michael De Vlieger_, Dec 13 2022 *)
%t A356574 f[p_, e_] := 2*e^2 + 3*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 14 2022 *)
%o A356574 (PARI) a(n) = sumdiv(n, d, numdiv(d^4));
%o A356574 (PARI) a(n) = sumdiv(n, d, numdiv(n*d^2));
%o A356574 (PARI) a(n) = sumdiv(n, d, numdiv(n^2));
%o A356574 (PARI) a(n) = numdiv(n)*numdiv(n^2);
%o A356574 (PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^4)*x^k/(1-x^k)))
%o A356574 (Python)
%o A356574 from math import prod
%o A356574 from sympy import factorint
%o A356574 def A356574(n): return prod((e+1)*((e<<1)+1) for e in factorint(n).values()) # _Chai Wah Wu_, Dec 13 2022
%Y A356574 Cf. A007425, A035116, A061391, A358380, A359037, A359038.
%Y A356574 Cf. A000005, A321348.
%K A356574 nonn,easy,mult
%O A356574 1,2
%A A356574 _Seiichi Manyama_, Dec 13 2022