cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356575 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k!) )^x.

This page as a plain text file.
%I A356575 #16 Aug 13 2022 11:29:02
%S A356575 1,0,2,6,24,185,990,9877,72968,824553,8495560,102689741,1317098772,
%T A356575 18729163609,270642677396,4396374315075,73997950572016,
%U A356575 1318896555293137,24900891903482832,499312682762581945,10301544926241347140,227464062944112566481
%N A356575 Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k!) )^x.
%F A356575 a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k * A087906(k-1) * binomial(n-1,k-1) * a(n-k).
%o A356575 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^(1/k!))^x))
%o A356575 (PARI) a087906(n) = (n-1)!*sumdiv(n, d, 1/(d-1)!);
%o A356575 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*a087906(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356575 Cf. A087906, A356025, A356576.
%K A356575 nonn
%O A356575 0,3
%A A356575 _Seiichi Manyama_, Aug 12 2022