cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356577 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^x.

This page as a plain text file.
%I A356577 #11 Aug 13 2022 11:29:30
%S A356577 1,0,2,6,28,195,1248,11200,97088,1036602,11477230,142038996,
%T A356577 1883459928,27044341896,412487825540,6745633845210,116679466051968,
%U A356577 2137078798914128,41252266236703320,838320793571448408,17846205347898263960,398262850748807921856
%N A356577 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^x.
%F A356577 a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k * A308345(k-1) * binomial(n-1,k-1) * a(n-k).
%o A356577 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k/k)^x))
%o A356577 (PARI) a308345(n) = n!*sumdiv(n, d, 1/(d*(n/d)^d));
%o A356577 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*a308345(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356577 Cf. A308345, A356408.
%K A356577 nonn
%O A356577 0,3
%A A356577 _Seiichi Manyama_, Aug 12 2022