cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356586 Number of binary digits in the n-th Gosper hyperfactorial of n (A330716).

This page as a plain text file.
%I A356586 #29 Nov 19 2022 21:18:28
%S A356586 1,1,5,51,657,9722,166296,3253365,71905965,1775175455,48467529392,
%T A356586 1451065354742,47289516677131,1667001471950287,63213921938077523,
%U A356586 2566296044236261518,111065406214766719510,5105032675471072965466,248377281869637961805657
%N A356586 Number of binary digits in the n-th Gosper hyperfactorial of n (A330716).
%C A356586 The 0th Gosper hyperfactorial is the usual factorial function.
%F A356586 a(n) = A070939(A330716(n)).
%e A356586 a(0)=1 since 0! has 1 binary digit.
%e A356586 a(3)=51 since the 3rd Gosper hyperfactorial of 3 in binary is 110111011110111100100000111011111111011101100000000, which has 51 digits.
%t A356586 Floor[Table[1+Sum[Log[k]*(k^n)/Log[2], {k, 1, n}], {n, 1, 18}]]
%o A356586 (PARI) a(n) = floor(sum(k=1, n, log(k)*k^n/log(2))) + 1; \\ _Michel Marcus_, Sep 27 2022
%Y A356586 Cf. A070939, A330716, A356585.
%K A356586 nonn,base
%O A356586 0,3
%A A356586 _Greg Huber_, Aug 13 2022