cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356597 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^exp(x).

This page as a plain text file.
%I A356597 #10 Aug 15 2022 10:30:59
%S A356597 1,1,5,26,172,1354,12403,127945,1471006,18589503,255951308,3808299648,
%T A356597 60871219649,1039240205691,18868377309780,362838034712928,
%U A356597 7364831540699076,157305165900364641,3526069495916583260,82744901973286823822,2028396974232995349291
%N A356597 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^exp(x).
%F A356597 a(0) = 1; a(n) = Sum_{k=1..n} A354339(k) * binomial(n-1,k-1) * a(n-k).
%o A356597 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k/k)^exp(x)))
%o A356597 (PARI) a354339(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)^d))/(n-k)!);
%o A356597 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354339(j)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A356597 Cf. A354339, A356408.
%K A356597 nonn
%O A356597 0,3
%A A356597 _Seiichi Manyama_, Aug 15 2022