This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356600 #15 Aug 17 2022 03:08:12 %S A356600 1,7,38,240,1509,12115,96326,929432,9421089,108909943,1249105054, %T A356600 17862483320,241674418101,3676733397363,59149265744302, %U A356600 1058605924855568,18041587282787489,363409114370324295,6970858463185187062,153017341796727034336,3360005220780469981157 %N A356600 a(n) = n! * Sum_{k=1..n} sigma_2(k)/(k * (n-k)!). %C A356600 The average value of a(n) is zeta(3) * exp(1) * n * n!. - _Vaclav Kotesovec_, Aug 17 2022 %F A356600 E.g.f.: exp(x) * Sum_{k>0} x^k/(k * (1 - x^k)^2). %F A356600 E.g.f.: -exp(x) * Sum_{k>0} k * log(1 - x^k). %t A356600 Table[n! * Sum[DivisorSigma[2, k]/(k * (n-k)!), {k, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Aug 17 2022 *) %o A356600 (PARI) a(n) = n!*sum(k=1, n, sigma(k, 2)/(k*(n-k)!)); %o A356600 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=1, N, x^k/(k*(1-x^k)^2)))) %o A356600 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, k*log(1-x^k)))) %Y A356600 Cf. A002745, A002746, A356589. %Y A356600 Cf. A356298. %K A356600 nonn %O A356600 1,2 %A A356600 _Seiichi Manyama_, Aug 15 2022