cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356601 Triangle read by rows. T(n, k) = denominator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k), for n >= 1, and T(0, 0) = 1.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 12, 3, 4, 1, 20, 30, 20, 5, 1, 30, 30, 10, 15, 6, 1, 42, 35, 70, 105, 14, 7, 1, 56, 7, 280, 35, 56, 7, 8, 1, 72, 252, 56, 630, 504, 28, 72, 9, 1, 90, 180, 105, 630, 126, 420, 45, 45, 10, 1, 110, 495, 33, 1155, 1386, 1155, 165, 99, 110, 11, 1
Offset: 0

Views

Author

Peter Luschny, Aug 15 2022

Keywords

Examples

			Triangle T(n, k) starts:
[0]  1;
[1]  2,   1;
[2]  6,   3,   1;
[3] 12,   3,   4,   1;
[4] 20,  30,  20,   5,   1;
[5] 30,  30,  10,  15,   6,   1;
[6] 42,  35,  70, 105,  14,   7,  1;
[7] 56,   7, 280,  35,  56,   7,  8,  1;
[8] 72, 252,  56, 630, 504,  28, 72,  9,  1;
[9] 90, 180, 105, 630, 126, 420, 45, 45, 10,  1;
The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
[0]   1                                              =     1;
[1] + 1/2                                            =   1/2;
[2] - 1/6  +  1/3                                    =   1/6;
[3] + 1/12 -  1/3  +    1/4                          =     0;
[4] - 1/20 + 11/30 -  11/20 +   1/5                  = -1/30;
[5] + 1/30 - 13/30 +  11/10 -  13/15  +   1/6        =     0;
[6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7  =  1/42;
		

Crossrefs

Cf. A356602 (numerator), A173018, A278075, A356545, A356547.

Programs

  • Maple
    E1 := proc(n, k) combinat:-eulerian1(n, k) end:
    Trow := proc(n, z) if n = 0 then return 1 fi;
    seq(denom(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
    for n from 0 to 9 do Trow(n, z) od;
  • Mathematica
    Unprotect[Power]; Power[0, 0] = 1;
    E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
    T[n_, k_] /; n == k = 0^k;
    T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
    Table[Denominator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm

Formula

R(n, k) = (-1)^(k - n + 1)*Eulerian(n, k)*Gamma(k + 2)*Gamma(n - k)/Gamma(n + 2) for 0 <= k < n, and T(n, n) = 0^n.
Bernoulli(n) = Sum_{k=0..n} R(n, k), where Bernoulli(1) = 1/2.
T(n, k) = denominator(R(n, k)).