This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356603 #7 Aug 30 2022 09:41:41 %S A356603 1,2,4,10,8,20,50,110,16,40,100,220,250,550,1210,1870,32,80,200,440, %T A356603 500,1100,2420,3740,1250,2750,6050,9350,13310,20570,31790,43010,64, %U A356603 160,400,880,1000,2200,4840,7480,2500,5500,12100,18700,26620,41140,63580,86020 %N A356603 Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099). %C A356603 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %C A356603 The image consists of all numbers whose prime indices are odd and cover an initial interval of odd positive integers. %H A356603 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A356603 The terms together with their prime indices begin: %e A356603 1: {} %e A356603 2: {1} %e A356603 4: {1,1} %e A356603 10: {1,3} %e A356603 8: {1,1,1} %e A356603 20: {1,1,3} %e A356603 50: {1,3,3} %e A356603 110: {1,3,5} %e A356603 16: {1,1,1,1} %e A356603 40: {1,1,1,3} %e A356603 100: {1,1,3,3} %e A356603 220: {1,1,3,5} %e A356603 250: {1,3,3,3} %e A356603 550: {1,3,3,5} %e A356603 1210: {1,3,5,5} %e A356603 1870: {1,3,5,7} %t A356603 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356603 stcinv[q_]:=1/2 Total[2^Accumulate[Reverse[q]]]; %t A356603 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A356603 sq=stcinv/@Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,1000}]; %t A356603 Table[Position[sq,k][[1,1]],{k,0,mnrm[Rest[sq]]}] %Y A356603 See link for sequences related to standard compositions. %Y A356603 The partitions with these Heinz numbers are counted by A053251. %Y A356603 A subset of A066208 (numbers with all odd prime indices). %Y A356603 Up to permutation, these are the positions of first appearances of rows in A356226. Other statistics are: %Y A356603 - length: A287170, firsts A066205 %Y A356603 - minimum: A356227 %Y A356603 - maximum: A356228 %Y A356603 - bisected length: A356229 %Y A356603 - standard composition: A356230 %Y A356603 - Heinz number: A356231 %Y A356603 The sorted version is A356232. %Y A356603 An ordered version is counted by A356604. %Y A356603 A001221 counts distinct prime factors, sum A001414. %Y A356603 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356603 Cf. A000005, A001222, A055932, A061395, A073493, A132747, A137921, A193829, A286470, A356224, A356237. %K A356603 nonn %O A356603 0,2 %A A356603 _Gus Wiseman_, Aug 30 2022