This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356605 #13 Sep 01 2022 19:48:07 %S A356605 1,1,1,2,3,5,6,10,15,26,41,65,104,164,262,424,687,1112,1792,2898,4677, %T A356605 7556,12197,19699,31836,51466,83234,134593,217674,352057,569452, %U A356605 921165,1490173,2410784,3900288,6310436,10210358,16521108,26733020,43258086,69999295 %N A356605 Number of integer compositions of n into odd parts covering an interval of odd positive integers. %e A356605 The a(1) = 1 through a(8) = 15 compositions: %e A356605 (1) (11) (3) (13) (5) (33) (7) (35) %e A356605 (111) (31) (113) (1113) (133) (53) %e A356605 (1111) (131) (1131) (313) (1133) %e A356605 (311) (1311) (331) (1313) %e A356605 (11111) (3111) (11113) (1331) %e A356605 (111111) (11131) (3113) %e A356605 (11311) (3131) %e A356605 (13111) (3311) %e A356605 (31111) (111113) %e A356605 (1111111) (111131) %e A356605 (111311) %e A356605 (113111) %e A356605 (131111) %e A356605 (311111) %e A356605 (11111111) %t A356605 nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]]; %t A356605 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@OddQ/@#&&nogapQ[(#+1)/2]&]],{n,0,15}] %Y A356605 These compositions are ranked by the intersection of A060142 and A356841. %Y A356605 Before restricting to odds we have A107428, initial A107429. %Y A356605 The not necessarily gapless version is A324969 (essentially A000045). %Y A356605 The strict case is A332032. %Y A356605 The initial case is A356604. %Y A356605 The case of partitions is A356737, initial A053251 (ranked by A356232). %Y A356605 A000041 counts partitions, compositions A011782. %Y A356605 A066208 lists numbers with all odd prime indices, counted by A000009. %Y A356605 A073491 lists numbers with gapless prime indices, initial A055932. %Y A356605 Cf. A001227, A066205, A137921, A333217, A356224, A356846. %K A356605 nonn %O A356605 0,4 %A A356605 _Gus Wiseman_, Aug 31 2022 %E A356605 More terms from _Alois P. Heinz_, Sep 01 2022