This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356606 #25 Feb 24 2024 10:05:21 %S A356606 1,0,0,1,0,1,1,1,0,2,1,1,2,1,2,3,2,2,5,2,4,5,5,4,8,5,7,9,8,8,13,10,11, %T A356606 16,13,15,20,18,18,27,21,26,31,30,30,43,34,42,49,48,48,65,56,65,76,74, %U A356606 77,97,88,98,117,111,119,143,137,146,175,165,182,208 %N A356606 Number of strict integer partitions of n where all parts have neighbors. %C A356606 A part x has a neighbor if either x - 1 or x + 1 is a part. %H A356606 Alois P. Heinz, <a href="/A356606/b356606.txt">Table of n, a(n) for n = 0..5000</a> (first 301 terms from John Tyler Rascoe) %H A356606 John Tyler Rascoe, <a href="/A356606/a356606.py.txt">Python program</a> %F A356606 G.f.: 1 + Sum_{i>0} A(x,i), where A(x,i) = x^((2*i)+1) * G(x,i+1) for i > 0, is the g.f. for partitions of this kind with least part i, and G(x,k) = 1 + x^(k+1) * G(x,k+1) + Sum_{m>=0} x^(2*(k+m)+5) * G(x,m+k+3). - _John Tyler Rascoe_, Feb 16 2024 %e A356606 The a(n) partitions for n = 0, 1, 3, 9, 15, 18, 20, 24 (A = 10, B = 11): %e A356606 () . (21) (54) (87) (765) (7643) (987) %e A356606 (432) (654) (6543) (8732) (8754) %e A356606 (54321) (7632) (9821) (9843) %e A356606 (8721) (65432) (A932) %e A356606 (65421) (BA21) %e A356606 (87432) %e A356606 (87621) %e A356606 (765321) %t A356606 Table[Length[Select[IntegerPartitions[n], Function[ptn,UnsameQ@@ptn&&And@@Table[MemberQ[ptn,x-1]||MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}] %o A356606 (Python) # see linked program %Y A356606 This is the strict case of A355393 and A355394. %Y A356606 The complement is counted by A356607, non-strict A356235 and A356236. %Y A356606 A000041 counts integer partitions, strict A000009. %Y A356606 A000837 counts relatively prime partitions, ranked by A289509. %Y A356606 A007690 counts partitions with no singletons, complement A183558. %Y A356606 Cf. A137921, A325160, A328171, A328172, A328187, A328220, A328221, A356237. %K A356606 nonn %O A356606 0,10 %A A356606 _Gus Wiseman_, Aug 24 2022