This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356607 #20 Feb 12 2024 16:32:02 %S A356607 0,1,1,1,2,2,3,4,6,6,9,11,13,17,20,24,30,36,41,52,60,71,84,100,114, %T A356607 137,158,183,214,248,283,330,379,432,499,570,648,742,846,955,1092, %U A356607 1234,1395,1580,1786,2005,2270,2548,2861,3216,3610,4032,4526,5055,5642,6304,7031,7820,8720,9694 %N A356607 Number of strict integer partitions of n with at least one neighborless part. %C A356607 A part x is neighborless if neither x - 1 nor x + 1 are parts. %H A356607 Alois P. Heinz, <a href="/A356607/b356607.txt">Table of n, a(n) for n = 0..5000</a> (first 101 terms from Lucas A. Brown) %H A356607 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A356607.py">A356607.py</a> %e A356607 The a(0) = 0 through a(9) = 6 partitions: %e A356607 . (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A356607 (31) (41) (42) (52) (53) (63) %e A356607 (51) (61) (62) (72) %e A356607 (421) (71) (81) %e A356607 (431) (531) %e A356607 (521) (621) %t A356607 Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}] %Y A356607 This is the strict case of A356235 and A356236. %Y A356607 The complement is counted by A356606, non-strict A355393 and A355394. %Y A356607 A000041 counts integer partitions, strict A000009. %Y A356607 A000837 counts relatively prime partitions, ranked by A289509. %Y A356607 A007690 counts partitions with no singletons, complement A183558. %Y A356607 Cf. A073492, A137921, A325160, A328171, A328172, A328187, A328220, A328221. %K A356607 nonn %O A356607 0,5 %A A356607 _Gus Wiseman_, Aug 26 2022 %E A356607 a(31)-a(59) from _Lucas A. Brown_, Sep 09 2022