This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356623 #26 Jul 04 2023 14:24:33 %S A356623 2,18,148,1208,9854,80378,655632,5347896,43622018,355818522, %T A356623 2902360468,23674136576,193106524430,1575142124306,12848207584320, %U A356623 104800979913168,854846508252578,6972859922465346,56876614724333236 %N A356623 Number of ways to tile a hexagonal strip made up of 4*n+2 equilateral triangles, using triangles and diamonds. %C A356623 Here is the hexagonal strip: %C A356623 ________________ ____ %C A356623 /\ /\ /\ /\ / \ /\ %C A356623 /__\/__\/__\/__\/ ... \/__\ %C A356623 \ /\ /\ /\ /\ /\ / %C A356623 \/__\/__\/__\/__\ /__\/ %C A356623 The two types of tiles are triangles and diamonds (each of which can be rotated). Here are the two types of tiles: %C A356623 ____ ____ %C A356623 \ / \ \ %C A356623 \/ and \___\. %H A356623 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (9, -7, 1). %F A356623 a(n) = 9*a(n-1) - 7*a(n-2) + a(n-3). %F A356623 a(n) = 2^(n+1) + Sum_{k=1..n} 2^(n-k)*(3*b(k) - b(k-1)) for n>=1, for b(n) = A356622(n). %F A356623 G.f.: 2/(1 - 9*x + 7*x^2 - x^3). %F A356623 a(n) = 2 + a(n-1) + 2*Sum_{k=1..n}(a(k-1)+A356622(k)). - _Aarnav Gogri_, Aug 17 2022 %F A356623 a(n+3) = 2*b(n+3) + Sum_{k=0..n} a(k)*b(n-k) for b(n) = A190984(n+1). - _Greg Dresden_ and _Aarnav Gogri_, Aug 24 2022 %e A356623 For n=3, here is one of the a(3)=1208 ways to tile this strip (of 14 triangles) using triangles and diamonds. %e A356623 ____________ %e A356623 /\ /\ \ \ %e A356623 /__\/ \___\ __\ %e A356623 \ /\ / /\ / %e A356623 \/__\/__ /__\/ %t A356623 LinearRecurrence[{9, -7, 1}, {2, 18, 148}, 40] %Y A356623 Cf. A356622, A190984. %K A356623 nonn %O A356623 0,1 %A A356623 _Greg Dresden_ and _Aarnav Gogri_, Aug 17 2022