cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356646 Numbers k such that the integer log of k! is a perfect power.

Original entry on oeis.org

4, 8, 27, 31, 575, 669, 1201, 2505, 4784, 7618, 35710, 65005, 166422, 870062, 994086, 1105670, 1209538, 2140133, 3020610, 9147713, 9404277, 14492743, 16792162, 18566766, 19445469, 21264479, 46483343, 109424090, 292374429, 293351547, 362681674, 399576585, 450622855
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 19 2022

Keywords

Comments

Numbers k such that A025281(k) is a perfect power.
Numbers k such that A356631(k) = 1.

Examples

			a(2) = 8 because the integer log of 8! = 2^7 * 3^2 * 5 * 7 is 2*7 + 3*2 + 5 + 7 = 32 = 2^5 is a perfect power.
		

Crossrefs

Programs

  • Maple
    spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc:s:= 0: R:= NULL: count:= 0:
    for i from 1 while count < 27 do
      s:= s+spf(i);
      if ispow(s) then
        count:= count+1; R:= R,i;
      fi
    od:
    R;
  • Mathematica
    Select[Range[8000], GCD @@ FactorInteger[Plus @@ Times @@@ FactorInteger[#!]][[;; , 2]] > 1 &] (* Amiram Eldar, Aug 26 2022 *)
  • Python
    from itertools import count, islice, accumulate
    from math import prod
    from sympy import perfect_power, factorint
    def A356646_gen(): # generator of terms
        return (a+2 for a, b in enumerate(accumulate(sum(prod(d) for d in factorint(n).items()) for n in count(2))) if perfect_power(b))
    A356646_list = list(islice(A356646_gen(),10)) # Chai Wah Wu, Aug 28 2022

Extensions

a(28)-a(33) from Chai Wah Wu, Aug 28 2022
Showing 1-1 of 1 results.