cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356636 Triangle read by rows. T(n, k) = binomial(n, k) * n!^2 / floor(n/2)!^2.

Original entry on oeis.org

1, 1, 1, 4, 8, 4, 36, 108, 108, 36, 144, 576, 864, 576, 144, 3600, 18000, 36000, 36000, 18000, 3600, 14400, 86400, 216000, 288000, 216000, 86400, 14400, 705600, 4939200, 14817600, 24696000, 24696000, 14817600, 4939200, 705600
Offset: 0

Views

Author

Peter Luschny, Aug 19 2022

Keywords

Examples

			Triangle T(n, k) starts:
[0]     1;
[1]     1,     1;
[2]     4,     8,      4;
[3]    36,   108,    108,     36;
[4]   144,   576,    864,    576,    144;
[5]  3600, 18000,  36000,  36000,  18000,  3600;
[6] 14400, 86400, 216000, 288000, 216000, 86400, 14400;
		

Crossrefs

Programs

  • Maple
    A356636 := (n, k) -> binomial(n, k) * (n! / iquo(n, 2)!) ^ 2:
    for n from 0 to 9 do seq(A356636(n, k), k = 0..n) od;

Formula

T(n, 0) = T(n, n) = A193282(n).
Sum_{k=0..n} T(n, k) = 2^n * A193282(n).